Цветное пламя. Щелочно - земельные металлы

Урок №

Подготовила учитель химии

Тема урока: Щелочно - земельные металлы. Нахождение в природе. Кальций и его соединения. Жесткость воды и способы ее устранения.

Цель урока: расширить и углубить знания о щелочно – земельных металлах и образуемых ими простых и сложных веществах на примере кальция; дать определение жесткости воды, ее видов и способах ее устранения.

Задачи:

Образовательная:

Рассмотреть кальций как химический элемент и как простое вещество, его свойства, образуемые соединения;

Сформировать понятие о жесткости воды, её причинах и способах устранения;

Показать необходимость и значение устранения жесткости воды в промышленности и быту.

Развивающая:

Продолжить формировать умения давать характеристику химическому элементу по ПСХЭ, проводить эксперимент, составлять уравнения химических реакций характеризующие химические свойства простого вещества – кальция и его соединений;

Развитие навыков самостоятельной работы, коммуникативных способностей учащихся, находить причинно-следственные связи, аргументировать ответ, делать выводы на основе имеющихся теоретических знаний и проделанных опытов.

Воспитательная:

Воспитывать интерес к химии как науке, через примеры связанные жизнью.

Тип урока: урок совершенствования знаний, умений и навыков.

Методы обучения: частично – поисковый, словесный, наглядный.

10. Оксиды и гидроксиды щелочных металлов проявляют ярко выраженные основные свойства.

III Мотивация учебной деятельности учащихся (постановка целей и задач урока)

1. Какие элементы расположены во II А – группе ПСХЭ?

Во II А – группе ПСХЭ расположены бериллий, магний, щелочно – земельные металлы (кальций, стронций, барий) и радий.

2. Сколько электронов находится на внешнем энергетическом уровне элементов II А - группы ПСХЭ?

На внешнем энергетическом уровне элементов II А - группы ПСХЭ находятся 2 электрона.

3. Как вы думаете, что мы сегодня будем изучать на уроке?

Обучающиеся вместе с учителем озвучивают цель урока.

IV Изучение нового материала

Наибольшее практическое значение из элементов II А - группы ПСХЭ имеют магний и кальций.

1. Строение атома.

1) Общая электронная конфигурация внешнего энергетического уровня – ns2;

2) С увеличением радиуса атома уменьшается энергия ионизации;

3)С возрастанием порядкового номера отдача электронов облегчается, что приводит к закономерному возрастанию металлических свойств, которые более ярко проявляются у щелочноземельных металлов.

2. Нахождение в природе (самостоятельная работа с учебником – стр. 156, таблица 32).

Известняк, мрамор, мел – CaCO3;

Гипс – CaSO4* 2H2O;

Фосфорит и апатит – Ca3(PO4)2;

Доломит – CaCO3*MgCO3;

Магнезит – MgCO3.

3. Физические свойства.

Магний и кальций – металлы серебристо – белого цвета, очень легкие(плотность кальция – 1, 55 г/см3, плотность магния – 1, 74 г/ см3, как и щелочные металлы, но гораздо тверже их и имеют гораздо более высокие температуры плавления.

4. Физкультминутка

Чтобы голова не болела,

Ей вращаем вправо-влево. (Вращение головой)

А теперь руками крутим –

И для них разминка будет. (Вращение прямых рук вперед и назад)

Тянем наши ручки к небу,

В стороны разводим. (Потягивания – руки вверх и в стороны)

Повороты вправо-влево

Плавно производим. (Повороты туловища влево и вправо)

Наклоняемся легко,

Достаем руками пол. (Наклоны вперед)

Потянули плечи, спинки,

А теперь конец разминке. (Дети садятся)

5. Химические свойства.

В химических реакциях металлы IIА - группы отдают валентные электроны и являются сильными восстановителями.

Me0 – 2е = Me+2

1. Me + Cl2 = MeCl2

3. Me + 2HCl = MeCl2 + H2

4. Me +2 H2O = Me(OH)2 + H2

5. Me + H2 = MeH2

6. 2Me + O2 =2 MeO

6. Получение.

Бериллий, магний, кальций получают в основном электролизом расплавов их хлоридов в смеси с NaCl (Be), KCl (Mg, Ca) и CaF2 (Ca). Применяется также восстановление оксидов и фторидов металлов алюминием , магнием, углеродом, кремнием:

4ЭО + 2Al → ЭО·Al2O3 + 3Э (Э – Ca, Sr, Ba),

BeF2 + Mg → MgF2 + Be,

MgO + C → CO + Mg,

2MgO + 2CaO + Si → 2CaO·SiO2 + 2Mg

7. Применение (самостоятельная работа с учебником – стр. 157, составить схему).

Применение магния:

Синтез органических соединений;

В пиротехнике;

Производство легких сплавов.

Применение кальция:

Металлотермическое получение некоторых тугоплавких металлов (титан, цирконий);

Производство стали и чугуна для очистки их от кислорода;

Получение некоторых сплавов (свинцово - кальциевых).

8. Кальций, его соединения в природе (самостоятельная работа с учебником дома – стр. 159 – 160, заполнить таблицу « Важнейшие соединения кальция» ).

.Лабораторный опыт № 12

Распознавание ионов кальция и магния.

Насыпать небольшое количество сульфата кальция и сульфата магния в ложки для сжигания веществ, по очереди внести их в пламя спиртовки. Что наблюдаете?

Вывод: Соединения кальция окрашивают пламя в кирпично – красный цвет, магния – в ослепительно - белый.

9. Жёсткость воды и способы её устранения (рассказ учителя, с применением таблицы)

Растворимые соли кальция и магния присутствующие в природной воде обуславливают общую жёсткость воды. Если они присутствуют в воде в небольших количествах, то вода называется мягкой. При большом содержании этих солей (100 – 200 мг солей кальция – в 1 л в пересчёте на ионы) вода считается жёсткой. В такой воде мыло плохо пенится, так как соли кальция и магния образуют с ним нерастворимые соединения. В жёсткой воде плохо развариваются пищевые продукты, и при кипячении она даёт на стенках паровых котлов накипь. Накипь плохо проводит теплоту, вызывает увеличение расхода топлива и ускоряет изнашивание стенок котла.

Карбонатная жесткость (временная) вызвана присутствием в растворе гидрокарбонатов кальция и магния, а некарбонатная (постоянная) – присутствием хлоридов и сульфатов. Карбонатная и некарбонатная жесткость в сумме образуют общую жесткость воды.

V Закрепление

Составить уравнения реакций, характеризующих способы устранения жесткости воды.

1. Кипячение

Сa(HCO3)2 → CaCO3↓ + CO2 + H2O

2. Добавление известкового молока

Сa(HCO3)2 + Ca(OH)2 → 2CaCO3↓ + 2H2O

3. Добавление соды

Сa(HCO3)2 + Na2CO3 → CaCO3↓ + 2NaHCO3

CaCl2 + Na2CO3 → CaCO3↓ + 2NaCl

4. Пропускание через ионообменную смолу

CaCl2 + Na2R → CaR + 2NaCl R-частица ионита, несущая отрицательный заряд 2–

Что было самым сложным на уроке? Почему?

Что нового вы узнали?

Как вы считаете, где могут пригодиться вам новые знания?

VII Домашнее задание

Изучить материал §44,45 учебника, составить таблицу «Важнейшие соединения кальция» .

Натрий – элемент 3-го периода и IA-группы Периодической системы, порядковый номер 11. Электронная формула атома [ 10 Ne]3s 1 , степени окисления +I и 0. Имеет малую электроотрицательность (0,93), проявляет только металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Почти все соли натрия хорошо растворимы в воде.

В природе – пятый по химической распространенности элемент (второй среди металлов), встречается только в виде соединений. Жизненно важный элемент для всех организмов.

Натрий, катион натрия и его соединения окрашивают пламя газовой горелки в ярко-желтый цвет (качественное обнаружение).

Натрий Na. Серебристо-белый металл, легкий, мягкий (режется ножом), низкоплавкий. Хранят натрий в керосине. С ртутью образует жидкий сплав - амальгаму (до 0,2 % Na).

Весьма реакционноспособный, во влажном воздухе натрий медленно покрывается гидроксидной пленкой и теряет блеск (тускнеет):

Натрий химически активен, сильный восстановитель. Воспламеняется на воздухе при умеренном нагревании (>250 °C), реагирует с неметаллами:

2Na + O 2 = Na 2 O 2 2Na + H 2 = 2NaH

2Na + Cl 2 = 2NaCl 2Na + S = Na 2 S

6Na + N 2 = 2Na 3 N 2Na + 2C = Na 2 C 2

Очень бурно и с большим экзо -эффектом натрий реагирует с водой:

2Na + 2H 2 O = 2NaOH + Н 2 ^ + 368 кДж

От теплоты реакции кусочки натрия расплавляются в шарики, которые начинают беспорядочно двигаться из-за выделения Н 2 . Реакция сопровождается резкими щелчками вследствие взрывов гремучего газа (Н 2 + O 2). Раствор окрашивается фенолфталеином в малиновый цвет (щелочная среда).

В ряду напряжений натрий стоит значительно левее водорода, из разбавленных кислот HCl и H 2 SO 4 вытесняет водород (за счет Н 2 O и Н +).

Получение натрия в промышленности:



(см. также ниже получение NaOH).

Натрий применяется для получения Na 2 O 2 , NaOH, NaH, а также в органическом синтезе. Расплавленный натрий служит теплоносителем в ядерных реакторах, а газообразный – используется как наполнитель желтосветных ламп наружного освещения.

Оксид натрия Na 2 O. Основный оксид. Белый, имеет ионное строение (Na +) 2 O 2- . Термически устойчивый, при прокаливании медленно разлагается, плавится под избыточным давлением пара Na. Чувствителен к влаге и углекислому газу в воздухе. Энергично реагирует с водой (образуется сильнощелочной раствор), кислотами, кислотными и амфотерными оксидами, кислородом (под давлением). Применяется для синтеза солей натрия. Не образуется при сжигании натрия на воздухе.

Уравнения важнейших реакций:




Получение: термическое разложение Na 2 O 2 (см.), а также сплавление Na и NaOH, Na и Na 2 O 2:

2Na + 2NaOH = 2Na a O + H 2 (600 °C)

2Na + Na 2 O 2 = 2Na a O (130–200 °C)

Пероксид натрия Na 2 O 2 . Бинарное соединение. Белый, гигроскопичный. Имеет ионное строение (Na +) 2 O 2 2- . При нагревании разлагается, плавится под избыточным давлением O 2 . Поглощает углекислый газ из воздуха. Полностью разлагается водой, кислотами (выделение O 2 при кипячении - качественная реакция на пероксиды). Сильный окислитель, слабый восстановитель. Применяется для регенерации кислорода в изолирующих дыхательных приборах (реакция с СO 2), как компонент отбеливателей ткани и бумаги. Уравнения важнейших реакций:

2Na 2 O 2 = 2Na 2 O + O 2 (400–675 °C, вакуум)

Na 2 O 2 + 2Н 2 O = Н 2 O 2 + 2NaOH (на холоду)

2Na 2 O 2 + 2Н 2 O = O 2 ^ + 4NaOH (кипячение)

Na 2 O 2 + 2НCl (разб.) = 2NaCl + Н 2 O 2 (на холоду)

2Na 2 O 2 + 4НCl (разб.) = 4НCl + 2Н 2 O + O 2 ^ (кипячение)

2Na 2 O 2 + 2CO 2 = Na 2 CO 3 + O 2

Na 2 O 2 + CO = Na 2 CO 3

Na 2 O 2 + 4H + + 2I - = I 2 v + 2H 2 O + 2Na +

5Na 2 O 2 + 16H + + 2MnO 4 - = 5O 2 ^ + 2Mn 2+ + 8H 2 O + 10Na +

3Na 2 O 2 + 2 3- = 2CrO 2 4- + 8OH - + 2H 2 O + 6Na + (80 °C)

Получение: сжигание Na на воздухе.

Гидроксид натрия NaOH. Основный гидроксид, щелочь, техническое название едкий натр. Белые кристаллы с ионным строением (Na +)(OH -). Расплывается на воздухе, поглощая влагу и углекислый газ (образуется NaHCO 3). Плавится и кипит без разложения. Вызывает тяжелые ожоги кожи и глаз.

Хорошо растворим в воде (с экзо -эффектом, +56 кДж). Реагирует с кислотными оксидами, нейтрализует кислоты, вызывает кислотную функцию у амфотерных оксидов и гидроксидов:




NaOH (разб.) + H 3 PO 4 (конц.) = NaH 2 PO 4 + H 2 O

2NaOH (разб.) + H 3 PO 4 (разб.) = Na 2 HPO 4 + 2H 2 O

3NaOH (конц.) + H 3 PO 4 (разб.) = Na 3 PO 4 + 3H 2 O

2NaOH (T) + M 2 O 3 = 2NaMO 2 + H 2 O (1000 °C, M = Al, Cr)

2NaOH (конц.) + 3H 2 O + AI 2 O 3 = 2Na (кипячение)

2NaOH (T) + M(OH) 2 = Na 2 MO 2 + 2H 2 O (500 °C, M = Be, Zn)

2NaOH (конц.) + Zn(OH) 2 = Na 2

Осаждает нерастворимые гидроксиды:

2NaOH + MCl 2 = 2NaCl + M(OH) 2 v (M = Mg, Cu)

Подвергает дисмутации галогены и серу:

2NaOH (конц., хол.) + Е 2 = NaE + NaEO + H 2 O (Е = Cl, Br)

6NaOH (разб., гор.) + 3S = 2Na 2 S + Na 2 SO 3 + 3H 2 O

Подвергается электролизу в расплаве:



Раствор NaOH разъедает стекло (образуется NaSiO 3), корродирует поверхность алюминия (образуются Na и Н 2).

Получение NaOH в промышленности :

а) электролиз раствора NaCl на инертном катоде:



б) электролиз раствора NaCl на ртутном катоде (амальгамный способ):




(освобождающуюся ртуть возвращают в электролизер).

Едкий натр – важнейшее сырье химической промышленности. Используется для получения солей натрия, целлюлозы, мыла, красителей и искусственного волокна; как осушитель газов; реагент в извлечении из вторичного сырья и очистке олова и цинка; при переработке руд алюминия (бокситов).

Калий – элемент 4-го периода и IA-группы Периодической системы, порядковый номер 19. Электронная формула атома [ 18 Ar]4s 1 , степени окисления +I и 0. Имеет малую электроотрицательность (0,91), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Почти все соли калия хорошо растворимы в воде.

В природе – девятый по химической распространенности элемент (шестой среди металлов), находится только в виде соединений. Жизненно важный элемент для всех организмов.

Недостаток калия в почве восполняется внесением калийных удобрений – хлорида КCl, сульфата K 2 SO 4 и золы растений.

Калий, катион калия и его соединения окрашивают пламя газовой горелки в фиолетовый цвет (качественное обнаружение).

Калий К. Серебристо-белый металл, легкий, очень мягкий, низкоплавкий. Хранят калий под слоем керосина. С ртутью образует жидкий сплав – амальгаму.

По химическим свойствам похож на натрий, но еще более реакционноспособный. Во влажном воздухе тускнеет, покрываясь гидроксидной пленкой.

Калий проявляет сильные восстановительные свойства. Активно сгорает на воздухе до КO 2 , реагирует с водородом (продукт KH), хлором (КCl), серой (K 2 S).

Энергично и с высоким экзо -эффектом калий разлагает воду:

2К + 2H 2 O = 2KOH + Н 2 ^ + 392 кДж,

выделяющийся водород тут же воспламеняется.

В ряду напряжений калий стоит значительно левее водорода, из разбавленных кислот HCl и H 2 SO 4 вытесняет водород (за счет Н 2 O и Н +), при этом серная кислота частично восстанавливается до SO 2 .

Получение калия в промышленности одинаково с получением натрия.

Применяется калий для синтеза его соединений (КO 2 , KH, соли), в виде расплава (в смеси с Na) – как теплоноситель в ядерных реакторах.

Гидроксид калия КОН. Основный гидроксид, щёлочь, техническое название едкое кали. Белый, имеет ионное строение К + ОН - . Плавится и кипит без разложения. Расплывается на воздухе, поглощает углекислый газ (образуется КНСO 3). Вызывает тяжелые ожоги кожи и глаз.

Хорошо растворим в воде (с высоким экзо -эффектом), создает в растворе сильнощелочную среду. Нейтрализуется кислотами, реагирует с кислотными оксидами, амфотерными гидроксидами и оксидами. Концентрированный раствор разъедает стекло (образуется K 2 SiO 3).

Важнейшие реакции и методы получения КОН в промышленности аналогичны свойствам и получению NaOH.

Применяется КОН в производстве мыла, как адсорбент газов, дегидратирующий агент, осадитель нерастворимых гидроксидов металлов.

5.3. Кальций

Кальций – элемент 4-го периода и IIA-группы Периодической системы, порядковый номер 2O. Электронная формула атома [ 18 Ar]4s 2 , степени окисления +II и 0. Относится к щелочноземельным металлам.

Имеет низкую электроотрицательность (1,04), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Многие соли кальция малорастворимы в воде.

В природе – шестой по химической распространенности элемент (третий среди металлов), находится в связанном виде. Жизненно важный элемент для всех организмов.

Недостаток кальция в почве восполняется внесением известковых удобрений (СаСO 3 , СаО, цианамид кальция CaCN 2 и др.).

Кальций, катион кальция и его соединения окрашивают пламя газовой горелки в темно-оранжевый цвет (качественное обнаружение).

Кальций Са. Серебристо-белый металл, мягкий, пластичный. Во влажном воздухе тускнеет и покрывается пленкой из СаО и Са(ОН) 2 .

Весьма реакционноспособный; воспламеняется при нагревании на воздухе, реагирует с водородом, хлором, серой и графитом:




Восстанавливает другие металлы из их оксидов (промышленно важный метод - кальцийтержия):

ЗСа + Cr 2 O 3 = ЗСаО + 2Cr (700–800 °C)

5Са + V 2 O 5 = 5СаО + 2V (950 °C)

Энергично реагирует с водой (с высоким экзо -эффектом):

Са + 2Н 2 O = Са(ОН) 2 + Н 2 ^ + 413 кДж

В ряду напряжений стоит значительно левее водорода, из разбавленных кислот НCl и H 2 SO 4 вытесняет водород (за счет Н 2 O и Н +):

Ca + 2H+ = Са 2+ + Н 2 ^

Получение кальция в промышленности :



Кальций применяется для удаления примесей неметаллов из металлических сплавов, как компонент легких и антифрикционных сплавов, для выделения редких металлов из их оксидов.

Оксид кальция СаО. Основный оксид. Техническое название негашёная известь. Белый, весьма гигроскопичный. Имеет ионное строение Са 2+ O 2- . Тугоплавкий, термически устойчивый, летучий при прокаливании. Поглощает влагу и углекислый газ из воздуха. Энергично реагирует с водой (с высоким экзо -эффектом), образует сильно щелочной раствор (возможен осадок гидроксида), процесс называется гашение извести. Реагирует с кислотами, оксидами металлов и неметаллов. Применяется для синтеза других соединений кальция, в производстве Са(ОН) 2 , СаС 2 и минеральных удобрений, как флюс в металлургии, катализатор в органическом синтезе, компонент вяжущих материалов в строительстве.

Уравнения важнейших реакций:




Получение СаО в промышленности – обжиг известняка (900-1200 °C):

СаСO 3 = СаО + СO 2

Гидроксид кальция Са(ОН) 2 . Основный гидроксид. Техническое название гашёная известь. Белый, гигроскопичный. Имеет ионное строение Са 2+ (ОН -) 2 . Разлагается при умеренном нагревании. Поглощает влагу и углекислый газ из воздуха. Малорастворим в холодной воде (образуется щелочной раствор), еще меньше – в кипящей воде. Прозрачный раствор (известковая вода) быстро мутнеет из-за выпадения осадка гидроксида (суспензию называют известковое молоко). Качественная реакция на ион Са 2+ – пропускание углекислого газа через известковую воду с появлением осадка СаСO 3 и переходом его в раствор. Реагирует с кислотами и кислотными оксидами, вступает в реакции ионного обмена.

Применяется в производстве стекла, белильной извести, известковых минеральных удобрений, для каустификации соды и умягчения пресной воды, а также для приготовления известковых строительных растворов – тестообразных смесей (песок + гашёная известь + вода), служащих связующим материалом для каменной и кирпичной кладки, отделки (оштукатуривания) стен и других строительных целей. Отвердевание («схватывание») таких растворов обусловлено поглощением углекислого газа из воздуха.

Уравнения важнейших реакций:




Получение Са(ОН) 2 в промышленности – гашение извести СаО (см. выше).

5.4. Жёсткость воды

Природная вода, проходя через известковые горные породы и почвы, обогащается солями кальция и магния (а также железа) и становится жёсткой. В жесткой воде при стирке белья увеличивается расход мыла, а ткань, впитывая соли, становится желтой и быстро ветшает. Накипь – нерастворимые соединения кальция и магния и оксид железами), осаждающиеся на внутренних стенках посуды, паровых котлов и трубопроводов. В жесткой воде дольше варятся овощи, крупы и мясо. Различают временную и постоянную жесткость воды.

Временная жесткость вызвана присутствием в воде гидрокарбонатов М(НСO 3) 2 (М = Са, Mg) и Fe(HCO 3) 2 . Если количественно определяют содержание ионов HCO 3 - , говорят о карбонатной жесткости, если содержание ионов Са 2+ , Mg 2+ и Fe 2+ – о кальциевой, магниевой или железной жесткости. Временная жесткость тем выше, чем больше содержание этих ионов в воде. Жесткость воды назвали временной потому, что она устраняется простым кипячением:

Са(НСO 3) 2 = СаСO 3 v + Н 2 O + СO 2 ^

Mg(HCO 3) 2 = Mg(OH) 2 v + 2СO 2 ^

4Fe(HCO 3) 2 + O 2 = 2Fe 2 O 3 v + 8CO 2 ^ + 4H 2 O

Постоянная жесткость обусловлена другими солями кальция и магния (сульфаты, хлориды, нитраты, дигидро-ортофосфаты и др.). Такая жесткость не устраняется кипячением воды. Поэтому для удаления из жесткой воды большей части всех солей ее умягчают, используя химические реактивы и специальные (ионообменные) способы. Умягченная вода пригодна для питья и приготовления пищи.

Умягчение воды достигается, если ее обработать различными осадителями – гашеной известью, содой и ортофосфатом натрия:

устранение временной жесткости:

Са(НСO 3) 2 + Са(ОН) 2 = 2СаСO 3 v + 2Н 2 O

Mg(HCO 3) 2 + Ca(OH) 2 = CaMg(CO 3) 2 v + 2Н 2 O

4Fe(HCO 3) 2 + 8Са(ОН) 2 + O 2 = 4FeO(OH)v + 8СаСO 3 v + 10Н 2 O

устранение постоянной жесткости:

Ca(NO 3) 2 + Na 2 CO 3 = СаСO 3 v + 2NaNO 3

2MgSO 4 + Н 2 O = Na 2 CO 3 = Mg 2 CO 3 (OH) 2 v + СO 2 ^ + 2Na 2 SO 4

3FeCl 2 + 2Na 3 PO 4 = Fe 3 (PO 4) 2 v + 6NaCl

В химической лаборатории и в промышленности используется полностью обессоленная вода (для питья она непригодна). Для получения обессоленной воды природную воду подвергают перегонке (дистилляции). Такая дистиллированная вода является мягкой, подобно дождевой воде.

5.5. Алюминий

Алюминий – элемент 3-го периода и IIIA-группы Периодической системы, порядковый номер 13. Электронная формула атома [ 10 Ne]3s 2 3p 1 , степени окисления + III и 0.

По электроотрицательности (1,47) одинаков с бериллием, проявляет амфотерные (кислотные и основные) свойства. В соединениях может находиться в составе катионов и анионов.

В природе – четвертый по химической распространенности элемент (первый среди металлов), находится в химически связанном состоянии.

Алюминий Al . Серебристо-белый, блестящий, легкий и пластичный металл. На воздухе покрывается матовой защитной пленкой Al 2 O 3 , весьма устойчивой и защищающей металл от коррозии; пассивируется в воде и концентрированной HNO 3 (образование той же оксидной пленки).

Реакционноспособный, сгорает на воздухе, при комнатной температуре реагирует с галогенами Cl 2 , Br 2 и I 2 , при нагревании – с фтором, серой:

4Al(порошок) + 3O 2 (воздух) = 2Al 2 O 3 (700 °C)

2Al(порошок) + ЗЕ 2 = 2AlЕ 3 (25 °C, Е = CI, Br)

2Al(порошок) + 3I 2 = 2AlI 3 (25 °C, кат. – капля Н 2 O)

2Al + 3F 2 = 2AlF 3 (600 °C)

2Al + 3S = Al 2 S 3 (150–200 °C)

Алюминий восстанавливает другие металлы из их оксидов (промышленно важный метод - алюминотермия):




Амальгамированный алюминий, т. е. очищенный от оксидной пленки, энергично и с большим экзо -эффектом реагирует с водой:

2Al + 6Н 2 O = 2Al(ОН) 3 v + ЗН 2 ^ + 836 кДж

Алюминий – сильный (типичный) восстановитель, в ряду напряжений стоит значительно левее водорода; вытесняет водород из разбавленных кислот НCl и H 2 SO 4:

2Al + 6Н+ = 2Al 3+ + ЗН 2 ^

и, проявляя амфотерность, из концентрированного раствора щелочей (окислитель – вода):

2Al + 2NaOH + 6Н 2 O = 2Na + ЗН 2 ^ (80 °C)

Реагирует со щелочами в расплаве (также демонстрируя амфотерные свойства):

2Al + 6NaOH (T) = 2NaAlO 2 + ЗН 2 + 2Na 2 O (450 °C)

Взаимодействует с разбавленной азотной кислотой:

Al + 4НNO 3 (разб.) = Al(NO 3) 3 + NO^ + 2Н 2 O

и восстанавливает N v до N -III в реакциях с очень разбавленной азотной кислотой и ее солями:

8Al + З0НNO 3 (оч. разб.) = 8Al(NO 3) 3 + 3NH 4 NO 3 + 9Н 2 O

8Al + 18Н 2 O + 5КОН + 3KNO 3 = 8К + 3NH 3 ^ (кипячение)

(движущей силой этих реакций служит промежуточное выделение атомарного водорода Н 0 , а во второй реакции – также и образование устойчивого гидроксокомплекса -).

Получение алюминия в промышленности – электролиз Al 2 O 3 в расплаве криолита Na 3 при 950 °C:



Применяется как реагент в алюминотермии для получения редких металлов и термитной сварке стальных конструкций. Алюминий – важнейший конструкционный материал, основа легких коррозионно-стойких сплавов (с магнием - дуралюмин, или дюраль, с медью - желтая алюминиевая бронза, из которой чеканят мелкую разменную монету). Чистый алюминий в больших количествах идет на изготовление посуды и электрических проводов.

Оксид алюминия Al 2 O 3 . Амфотерный оксид, кислотные и основные свойства равно выражены. Белый, имеет ионное строение (Al 3+) 2 (O 2-) 3 . Тугоплавкий, термически устойчивый. Аморфный порошок гигроскопичен и химически активен, кристаллический – очень тверд и химически пассивен. Не реагирует с водой, разбавленными кислотами и щелочами. Переводится в раствор концентрированными кислотами и щелочами, реагирует со щелочами и карбонатом натрия при сплавлении. Применяется как сырье в производстве алюминия, для изготовления огнеупорных, химически стойких и абразивных материалов, особо чистый Al 2 O 3 – для изготовления рубиновых лазеров и синтетических драгоценных камней (рубины, сапфиры и др.), окрашенных примесями оксидов других металлов – Cr 2 O 3 (красный цвет), Ti 2 O 3 и Fe 2 O 3 (голубой цвет).

Уравнения важнейших реакций:




(эта реакция используется для «вскрытия» бокситов)



В природе входит в состав глины и бокситов, образует минерал корунд.

Гидроксид алюминия Al(ОН) 3 . Амфотерный гидроксид, кислотные и основные свойства равно выражены. Белый, аморфный (гелеобразный) или кристаллический. Связи Al – ОН преимущественно ковалентные. Разлагается при нагревании без плавления. Практически не растворяется в воде. Реагирует с кислотами, щелочами в растворе и при сплавлении. Не реагирует с NH 3 Н 2 O, NH 4 Cl, СO 2 , SO 2 и H 2 S. Метагидроксид АlO(ОН) химически менее активен, чем Al(ОН) 3 . Промежуточный продукт в производстве алюминия. Применяется для синтеза других соединений алюминия (в том числе криолита), органических красителей, как лекарственный препарат при повышенной кислотности желудочного сока.

Уравнения важнейших реакций:

Термическое разложение



основная и кислотная диссоциация в растворе



(реакции характеризуют очень малую растворимость в воде и амфотерность гидроксида, поставляющего в раствор одновременно ионы ОН и Н + примерно в равной концентрации; гидроксид диссоциирует слабее, чем сама вода)

Амфотерные свойства

Al(ОН) 3 + ЗНСlразб.) = AlCl 3 + ЗН 2 O

Al(ОН) 3 + NaOH (т) = NaAlO 2 + 2Н 2 O (1000 °C)

Al(ОН) 3 + NaOH(конц.) = Na (p)

Для получения осадка Al(ОН) 3 щелочь обычно не используют из-за легкости перехода осадка в раствор (см. выше), а действуют на соли алюминия гидратом аммиака. При комнатной температуре образуется Al(ОН) 3 , а при кипячении – менее активный АlO(ОН):



Удобный способ получения Al(ОН) 3 – пропускание СO 2 через раствор гидроксокомплекса:

СO 2 = Al(ОН) 3 v + HCO 3 -

Тетрагидроксоалюминат(III) натрия Na. Комплексная соль. С таким составом существует при комнатной температуре в концентрированном растворе NaOH. Для твердого состояния состав условный, так как при кристаллизации из раствора он усложняется (выделены Na 4 , Na 4 и др.). При прокаливании твердые соли разлагаются до диоксоалюмината(III) натрия NaAlO 2 , при разбавлении их растворов – до Al(ОН) 3 . По-разному реагируют с сильными и слабыми кислотами, с хлоридом алюминия и карбонатом аммония.

Уравнения важнейших реакций:




Получение : взаимодействие Al(ОН) 3 и солей алюминия с NaOH в концентрированном растворе:

Al(OH) 3 + NaOH(конц.) = Na

AlCl 3 + 4NaOH(конц.) = Na + 3NaCl

Образуется из оксида алюминия (см.) как промежуточный продукт при промышленном «вскрытии» бокситов.

Примеры заданий части А

1. Среди металлов главной подгруппы II группы наиболее сильным восстановителем является

2) кальций

3) стронций


2. При сжигании магния на воздухе образуются


3. Алюминий будет выделять водород из реактива

1) HNO 3 (разб.)

2) NaHSO 4 (разб.)

3) H 2 SO 4 (конц.)

4) NaOH (конц.)


4. Реакция замещения протекает в растворе между алюминием и


5. Из раствора гидрокарбоната бария выпадает осадок при добавлении реактивов


6. Калий можно получить электролизом на угольных электродах из

1) раствора КCl

2) раствора KNO 3

3) расплава КCl

4) расплава смеси КCl и MgCl 2


7-8. Если внести каплю раствора

7. поваренной соли

8. хлорида калия

в бесцветное пламя газовой горелки, оно станет

1) красным

3) зеленым

4) фиолетовым


9. Устранение временной жёсткости воды проводится по реакции

1) Са(НСO 3) 2 + Na 3 PO 4 >…

2) Са(НСO 3) 2 + Са(ОН) 2 >…

3) CaSO 4 + Na 2 CO 3 >…

Кальций – элемент 4‑го периода и IIA‑группы Периодической системы, порядковый номер 2O. Электронная формула атома [ 18 Ar]4s 2 , степени окисления +II и 0. Относится к щелочноземельным металлам.

Имеет низкую электроотрицательность (1,04), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Многие соли кальция малорастворимы в воде.

В природе – шестой по химической распространенности элемент (третий среди металлов), находится в связанном виде. Жизненно важный элемент для всех организмов.

Недостаток кальция в почве восполняется внесением известковых удобрений (СаСO 3 , СаО, цианамид кальция CaCN 2 и др.).

Кальций, катион кальция и его соединения окрашивают пламя газовой горелки в темно‑оранжевый цвет (качественное обнаружение).

Кальций Са. Серебристо‑белый металл, мягкий, пластичный. Во влажном воздухе тускнеет и покрывается пленкой из СаО и Са(ОН) 2 .

Весьма реакционноспособный; воспламеняется при нагревании на воздухе, реагирует с водородом, хлором, серой и графитом:

Восстанавливает другие металлы из их оксидов (промышленно важный метод – кальцийтержия):

ЗСа + Cr 2 O 3 = ЗСаО + 2Cr (700–800 °C)

5Са + V 2 O 5 = 5СаО + 2V (950 °C)

Энергично реагирует с водой (с высоким экзо ‑эффектом):

Са + 2Н 2 O = Са(ОН) 2 + Н 2 + 413 кДж

В ряду напряжений стоит значительно левее водорода, из разбавленных кислот НCl и H 2 SO 4 вытесняет водород (за счет Н 2 O и Н +):

Ca + 2H+ = Са 2+ + Н 2

Получение кальция в промышленности :

Кальций применяется для удаления примесей неметаллов из металлических сплавов, как компонент легких и антифрикционных сплавов, для выделения редких металлов из их оксидов.

Оксид кальция СаО. Основный оксид. Техническое название негашёная известь. Белый, весьма гигроскопичный. Имеет ионное строение Са 2+ O 2‑ . Тугоплавкий, термически устойчивый, летучий при прокаливании. Поглощает влагу и углекислый газ из воздуха. Энергично реагирует с водой (с высоким экзо ‑эффектом), образует сильно щелочной раствор (возможен осадок гидроксида), процесс называется гашение извести. Реагирует с кислотами, оксидами металлов и неметаллов. Применяется для синтеза других соединений кальция, в производстве Са(ОН) 2 , СаС 2 и минеральных удобрений, как флюс в металлургии, катализатор в органическом синтезе, компонент вяжущих материалов в строительстве.

Уравнения важнейших реакций:

Получение СаО в промышленности – обжиг известняка (900–1200 °C):

СаСO 3 =СаО + СO 2

Гидроксид кальция Са(ОН) 2 . Основный гидроксид. Техническое название гашёная известь. Белый, гигроскопичный. Имеет ионное строение Са 2+ (ОН ‑) 2 . Разлагается при умеренном нагревании. Поглощает влагу и углекислый газ из воздуха. Малорастворим в холодной воде (образуется щелочной раствор), еще меньше – в кипящей воде. Прозрачный раствор (известковая вода) быстро мутнеет из‑за выпадения осадка гидроксида (суспензию называют известковое молоко). Качественная реакция на ион Са 2+ – пропускание углекислого газа через известковую воду с появлением осадка СаСO 3 и переходом его в раствор. Реагирует с кислотами и кислотными оксидами, вступает в реакции ионного обмена.


Применяется в производстве стекла, белильной извести, известковых минеральных удобрений, для каустификации соды и умягчения пресной воды, а также для приготовления известковых строительных растворов – тестообразных смесей (песок + гашёная известь + вода), служащих связующим материалом для каменной и кирпичной кладки, отделки (оштукатуривания) стен и других строительных целей. Отвердевание («схватывание») таких растворов обусловлено поглощением углекислого газа из воздуха.

Уравнения важнейших реакций:

Получение Са(ОН) 2 в промышленности – гашение извести СаО (см. выше).

Кальций – элемент 4‑го периода и IIA‑группы Периодической системы, порядковый номер 2O. Электронная формула атома [ 18 Ar]4s 2 , степени окисления +II и 0. Относится к щелочноземельным металлам.

Имеет низкую электроотрицательность (1,04), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Многие соли кальция малорастворимы в воде.

В природе – шестой по химической распространенности элемент (третий среди металлов), находится в связанном виде. Жизненно важный элемент для всех организмов.

Недостаток кальция в почве восполняется внесением известковых удобрений (СаСO 3 , СаО, цианамид кальция CaCN 2 и др.).

Кальций, катион кальция и его соединения окрашивают пламя газовой горелки в темно‑оранжевый цвет (качественное обнаружение).

Кальций Са. Серебристо‑белый металл, мягкий, пластичный. Во влажном воздухе тускнеет и покрывается пленкой из СаО и Са(ОН) 2 .

Весьма реакционноспособный; воспламеняется при нагревании на воздухе, реагирует с водородом, хлором, серой и графитом:

Восстанавливает другие металлы из их оксидов (промышленно важный метод – кальцийтержия):

ЗСа + Cr 2 O 3 = ЗСаО + 2Cr (700–800 °C)

5Са + V 2 O 5 = 5СаО + 2V (950 °C)

Энергично реагирует с водой (с высоким экзо ‑эффектом):

Са + 2Н 2 O = Са(ОН) 2 + Н 2 + 413 кДж

В ряду напряжений стоит значительно левее водорода, из разбавленных кислот НCl и H 2 SO 4 вытесняет водород (за счет Н 2 O и Н +):

Ca + 2H+ = Са 2+ + Н 2

Получение кальция в промышленности :

Кальций применяется для удаления примесей неметаллов из металлических сплавов, как компонент легких и антифрикционных сплавов, для выделения редких металлов из их оксидов.

Оксид кальция СаО. Основный оксид. Техническое название негашёная известь. Белый, весьма гигроскопичный. Имеет ионное строение Са 2+ O 2‑ . Тугоплавкий, термически устойчивый, летучий при прокаливании. Поглощает влагу и углекислый газ из воздуха. Энергично реагирует с водой (с высоким экзо ‑эффектом), образует сильно щелочной раствор (возможен осадок гидроксида), процесс называется гашение извести. Реагирует с кислотами, оксидами металлов и неметаллов. Применяется для синтеза других соединений кальция, в производстве Са(ОН) 2 , СаС 2 и минеральных удобрений, как флюс в металлургии, катализатор в органическом синтезе, компонент вяжущих материалов в строительстве.

Уравнения важнейших реакций:

Получение СаО в промышленности – обжиг известняка (900–1200 °C):

СаСO 3 =СаО + СO 2

Гидроксид кальция Са(ОН) 2 . Основный гидроксид. Техническое название гашёная известь. Белый, гигроскопичный. Имеет ионное строение Са 2+ (ОН ‑) 2 . Разлагается при умеренном нагревании. Поглощает влагу и углекислый газ из воздуха. Малорастворим в холодной воде (образуется щелочной раствор), еще меньше – в кипящей воде. Прозрачный раствор (известковая вода) быстро мутнеет из‑за выпадения осадка гидроксида (суспензию называют известковое молоко). Качественная реакция на ион Са 2+ – пропускание углекислого газа через известковую воду с появлением осадка СаСO 3 и переходом его в раствор. Реагирует с кислотами и кислотными оксидами, вступает в реакции ионного обмена.

Применяется в производстве стекла, белильной извести, известковых минеральных удобрений, для каустификации соды и умягчения пресной воды, а также для приготовления известковых строительных растворов – тестообразных смесей (песок + гашёная известь + вода), служащих связующим материалом для каменной и кирпичной кладки, отделки (оштукатуривания) стен и других строительных целей. Отвердевание («схватывание») таких растворов обусловлено поглощением углекислого газа из воздуха.

Уравнения важнейших реакций:

Получение Са(ОН) 2 в промышленности – гашение извести СаО (см. выше).

5.4. Жёсткость воды

Природная вода, проходя через известковые горные породы и почвы, обогащается солями кальция и магния (а также железа) и становится жёсткой. В жесткой воде при стирке белья увеличивается расход мыла, а ткань, впитывая соли, становится желтой и быстро ветшает. Накипь – нерастворимые соединения кальция и магния и оксид железами), осаждающиеся на внутренних стенках посуды, паровых котлов и трубопроводов. В жесткой воде дольше варятся овощи, крупы и мясо. Различают временную и постоянную жесткость воды.

Временная жесткость вызвана присутствием в воде гидрокарбонатов М(НСO 3) 2 (М = Са, Mg) и Fe(HCO 3) 2 . Если количественно определяют содержание ионов HCO 3 ‑ , говорят о карбонатной жесткости, если содержание ионов Са 2+ , Mg 2+ и Fe 2+ – о кальциевой, магниевой или железной жесткости. Временная жесткость тем выше, чем больше содержание этих ионов в воде. Жесткость воды назвали временной потому, что она устраняется простым кипячением:

Са(НСO 3) 2 = СаСO 3 ↓ + Н 2 O + СO 2

Mg(HCO 3) 2 = Mg(OH) 2 ↓ + 2СO 2

4Fe(HCO 3) 2 + O 2 = 2Fe 2 O 3 ↓ + 8CO 2 + 4H 2 O

Постоянная жесткость обусловлена другими солями кальция и магния (сульфаты, хлориды, нитраты, дигидро‑ортофосфаты и др.). Такая жесткость не устраняется кипячением воды. Поэтому для удаления из жесткой воды большей части всех солей ее умягчают, используя химические реактивы и специальные (ионообменные) способы. Умягченная вода пригодна для питья и приготовления пищи.

Умягчение воды достигается, если ее обработать различными осадителями – гашеной известью, содой и ортофосфатом натрия:

устранение временной жесткости:

Са(НСO 3) 2 + Са(ОН) 2 = 2СаСO 3 ↓ + 2Н 2 O

Mg(HCO 3) 2 + Ca(OH) 2 = CaMg(CO 3) 2 ↓ + 2Н 2 O

4Fe(HCO 3) 2 + 8Са(ОН) 2 + O 2 = 4FeO(OH)↓ + 8СаСO 3 ↓ + 10Н 2 O

устранение постоянной жесткости:

Ca(NO 3) 2 + Na 2 CO 3 = СаСO 3 ↓ + 2NaNO 3

2MgSO 4 + Н 2 O = Na 2 CO 3 = Mg 2 CO 3 (OH) 2 ↓ + СO 2 + 2Na 2 SO 4

3FeCl 2 + 2Na 3 PO 4 = Fe 3 (PO 4) 2 ↓ + 6NaCl

В химической лаборатории и в промышленности используется полностью обессоленная вода (для питья она непригодна). Для получения обессоленной воды природную воду подвергают перегонке (дистилляции). Такая дистиллированная вода является мягкой, подобно дождевой воде.

В большинстве случаев пламя камина или костра бывает желто-оранжевым из-за содержащихся в дровах солей. Добавляя определенные химические вещества, можно изменить цвет пламени, чтобы он больше соответствовал особому событию или чтобы просто полюбоваться сменой цветов. Чтобы изменить цвет пламени, вы можете добавить определенные химические соединения непосредственно в огонь, приготовить парафиновые лепешки с химикатами или замочить дрова в специальном химическом растворе. Несмотря на все то удовольствие, которое может подарить вам процесс создания цветного пламени, обязательно соблюдайте особую осторожность, когда работаете с огнем и химическими веществами.

Шаги

Выбор подходящих химикатов

    Выберите цвет (или цвета) пламени. Несмотря на то, что у вас есть возможность выбирать среди целого набора различных оттенков пламени, необходимо решить, какие из них вам наиболее важны, чтобы вы могли подобрать подходящие химические вещества. Пламя можно сделать синим, бирюзовым, красным, розовым, зеленым, оранжевым, фиолетовым, желтым или белым.

    Определите необходимые вам химические реагенты на основании того цвета, который они создают при горении. Чтобы окрасить пламя в нужный цвет, необходимо подобрать подходящие химикаты. Они должны быть порошковыми и не включать в себя хлораты, нитраты или перманганаты, образующие при горении вредные побочные продукты.

    • Чтобы создать синее пламя, возьмите хлорид меди или хлористый кальций.
    • Чтобы сделать пламя бирюзовым, используйте сульфат меди.
    • Для получения красного пламени возьмите хлорид стронция.
    • Для создания розового пламени используйте хлорид лития.
    • Чтобы сделать пламя светло-зеленого цвета, используйте буру.
    • Чтобы получить зеленое пламя, возьмите квасцы.
    • Чтобы создать оранжевое пламя, используйте хлорид натрия.
    • Для создания пламени фиолетового цвета возьмите хлористый калий.
    • Для получения желтого пламени используйте углекислый натрий.
    • Чтобы создать белое пламя, возьмите сернокислый магний.
  1. Купите нужные химические вещества. Некоторые из окрашивающих пламя реагентов относятся к широко используемым в хозяйстве веществам, поэтому их можно найти в продуктовом, хозяйственном или садовом магазине. Другие химикаты можно приобрести в специализированных магазинах химических реактивов или купить в интернет-магазинах.

    • Сульфат меди используется в сантехнических целях для уничтожения корней деревьев, которые могут повредить трубы, поэтому его можно поискать в хозяйственных магазинах.
    • Хлорид натрия – это обычная поваренная соль, поэтому ее можно купить в продуктовом магазине.
    • Хлористый калий используется как средство для смягчения воды, поэтому его также можно поискать в хозяйственных магазинах.
    • Бура нередко используется для стирки, поэтому ее можно найти в отделе моющих средств некоторых супермаркетов.
    • Сернокислый магний содержится в соли Эпсома, которую можно поспрашивать в аптеках.
    • Хлорид меди, хлористый кальций, хлорид лития, углекислый натрий и квасцы следует приобретать в магазинах химических реагентов или через интернет-магазины.

Подсыпание химикатов в огонь

Изготовление парафиновых лепешек

  1. Растопите парафин на водяной бане. Поставьте термостойкую миску на кастрюлю с медленно кипящей водой. Добавьте в миску несколько кусочков парафина и дайте им полностью растять.

    • Можно использовать покупной кусковой или баночный парафин (или воск) либо остатки парафина от старых свечек.
    • Не топите парафин на открытом пламени, иначе вы можете устроить пожар.
  2. Добавьте в парафин химикат и размешайте. Как только парафин полностью растает, снимите его с водяной бани. Добавьте 1–2 столовые ложки (15–30 г) химического реагента и тщательно размешайте до получения однородного состава.

    • Если вы не хотите добавлять химикаты напрямую в парафин, их можно предварительно завернуть в использованный абсорбирующий материал и потом положить полученный сверток в емкость, которую вы собираетесь залить парафином.
  3. Дайте парафиновому составу немного остыть и разлейте его по бумажным чашечкам. После приготовления парафиновой смеси с химикатом, дайте ей остыть в течение 5–10 минут. Пока смесь все еще будет жидкой, разлейте ее по бумажным чашечкам для кексов, чтобы приготовить парафиновые лепешки.

    • Для приготовления парафиновых лепешек можно использовать как небольшие бумажные чашечки, так и картонную упаковку от яиц.
  4. Позвольте парафину застыть. После того как парафин будет разлит по формам, дайте ему постоять до затвердения. На полное охлаждение уйдет примерно час времени.

    Подбросьте парафиновую лепешку в огонь. Когда парафиновые лепешки застынут, освободите одну из них от упаковки. Подбросьте лепешку в самую жаркую часть костра. По мере того как воск будет плавиться, пламя начнет менять свой цвет.

    • В огонь можно добавлять сразу несколько парафиновых лепешек с разными химическими добавками, только располагайте их в разных местах.
    • Парафиновые лепешки хорошо подходят для костров и каминов.

Обработка древесины химикатами

  1. Соберите сухие и легкие материалы для костра. Вам подойдут такие материалы древесного происхождения, как щепки, обрезки пиломатериалов, сосновые шишки и хворост. Также можно использовать скрученные газеты.

    Растворите химикат в воде. Добавьте по 450 г выбранного химиката на каждые 4 л воды, используйте для этого пластиковую емкость. Тщательно размешайте жидкость, чтобы ускорить растворение химиката. Для достижения наилучших результатов добавляйте в воду только один вид химического реагента.

    • Можно также взять стеклянную емкость, но избегайте применения металлической тары, которая может вступить в реакцию с химическими веществами. Соблюдайте осторожность, чтобы не уронить и не разбить используемые стеклянные емкости вблизи от очага костра или камина.
    • Обязательно наденьте защитные очки, маску (или респиратор) и резиновые перчатки, когда будете готовить химический раствор.
    • Лучше всего готовить раствор на открытом воздухе, так как некоторые виды химикатов могут оставлять пятна на рабочей поверхности или выделять вредные испарения.
  2. На сутки замочите в растворе древесные материалы. Перелейте раствор в большую емкость, например, в большой пластиковый контейнер. Положите древесные материалы в сетчатый мешок (такие мешки часто используют для хранения лука или картофеля) для последующего погружения в раствор. Придавите мешок кирпичом или иным тяжелым предметом и оставьте древесину в жидкости на 24 часа.

    Выньте сетку с древесными материалами из раствора и оставьте сушиться. Приподнимите сетчатый мешок с древесными материалами над емкостью с раствором, чтобы дать ему немного стечь. Затем положите древесные материалы на газетный лист или подвесьте их в сухом, хорошо проветриваемом месте и дайте просохнуть в течение 24 часов или более.

    • Обязательно используйте защитные перчатки, когда будете вытаскивать древесные материалы из химического раствора.
    • Если вы не дадите древесине высохнуть, то вам будет трудно разжечь костер.
  3. Сожгите обработанные древесные материалы в огне. Разведите костер или растопите камин. Когда обычные дрова прогорят и огонь уменьшится, подкиньте в него обработанные древесные материалы. Через несколько минут они загорятся, и вы увидите цветное пламя.