Без интерфейса передачи данных. Интерфейсы передачи данных

Интерфейс передачи данных говоря простым языком это своеобразный переходник между узлами, он знает, как передавать данные, что при этом использовать и чего ждать в ответ. А вот официальное определение уже звучит сложнее - это некая граница между двумя объектами или узлами, которые регламентируются особым принятым стандартом и реализуются с помощью установленных методов, средств и правил. Рассмотрим основные виды интерфейсов передачи данных.

Интерфейс Ethernet

С ним сталкивался практически каждый пользователь. Первоначальное его предназначение коммуникация между офисными устройствами. Для реализации первых соединений применялась линейная топология, и простой коаксиальный кабель. На сегодняшний момент данный подход уже устарел, да и наверное большинство пользователей удивляться как можно было компы соединить между собой коаксиальным кабелем, а раньше были такие сетевые карты. Сейчас в основе построения сетей используется топология «звезда», реализуемая и делимая на части маршрутизаторами и коммутаторами. По интерфейсу Ethernet можно передавать информацию со скоростью 10, 100, 1000 Мбит/сек. Одной из особенностей данного интерфейса является наличие MAC адреса, который вшит в аппаратную часть Вашей сетевой карты, приблизительно это как IMEI сотового телефона. С помощью него происходит распознавание того узла, который отправил и получил данные. Каждый MAC адрес уникален, достигается это тем, что разработчики устройств делят между собой общее множество значений. За тремя старшими байтами в MAC - адресе закреплен свой производитель.

Интерфейс USB

Также популярный интерфейс последовательной передачи данных USB (Universal Serial Bus). Все современные устройства оборудованы данным интерфейсом, главная его особенность в том, что используется технология Plung and Play. Означает это, что любое устройство с интерфейсом USB можно подключать и работать, в большинстве случаев избегая установки дополнительных драйвером. Например: флешки, переносные жесткие диски, клавиатуры, мыши и т. п. Одним из существенных плюсов USB подача питания на одном из контактов, что в свою очередь позволяет исключить дополнительный источник питания при подключении оборудования.

Интерфейс IrDA

Данный вид интерфейса уже практически устарел и многие даже не вспомнят его. А вот в недалеком прошлом без него практически невозможно было подключить первые сотовые телефоны к компьютеру. Его задача состояла в том, чтобы подключить то или иное оборудование с помощью инфракрасного излучения. Скорость передачи была очень низкой составляла всего 2400 - 115 200 bps, и ограничение нельзя было использовать на больших расстояниях. Как и упоминал выше, данный интерфейс в основном использовался в сотовых телефонах, но и компьютерная техника не исключение. На сегодняшний момент такую технологию применяют в пультах дистанционного управления различных устройств, например телевизоры, аудио-видео аппаратура и т. п.

Интерфейс HDMI

Данный интерфейс позволяет передавать медиа данные. Отличительной способность от старого интерфейса VGA, он позволяет передавать видео со звуком. Имеет большую пропускную способность и позволяет транслировать видео высокой четкости. Аббревиатура HDMI именно так и расшифровывается Hugh Definition Multimedia Interface.

Интерфейс Bluetooth

Он пришел на смену IrDA и сейчас активно используется во многих устройствах для создания связи между ними. Например: мышки, телефоны, ноутбуки, внешняя акустика и т. п. Производители заявляют радиус действия 100 метров, но на практике таких показателей добиться очень трудно, как правило составляет порядка 10 метров. Средняя скорость передачи данных составляет 3 Мбит/с.

Интерфейс Wi-Fi

Достаточно новый вид интерфейса, но уже завоевавший сердца многих пользователей. Основное его преимущество это беспроводное подключение. Используется практически во всех электронных устройствах, начиная от компьютеров, телевизоров и заканчивая лампочками и умными розетками. Технические характеристики постоянно улучшаются и усовершенствуются. Средняя скоро передачи составляет от 450 до 1300 Мбит/с.

Лекция 4 Типы интерфейсов данных

Лекция 4

Тема: Типы интерфейсов данных

Данные в сетях передаются в виде пакетов или ячеек. Сначала использовалась передача пакетов, которая до сих пор остается наиболее распространенным методом передачи данных в локальных сетях. Передача ячеек (пакетов фиксированной длины) позволяет строить высокоскоростные каналы между локальными и глобальными сетями. Для каждого метода передачи необходимы специальные интерфейсы, управляющие сетевыми коммуникациями на физическом уровне. В следующих разделах описываются и сравниваются используемые в сетях пакеты и ячейки, а также предназначение для них интерфейсы.

Передача пакетов

Данные передаются от узла к узлу в виде больших фрагментов, называемых пакетами или фреймами. Коммуникационное программное обеспечение каждого узла разбивает данные на такие фрагменты. В зависимости от передающей среды, фрагмент данных преобразуется в электрический, радио- или световой сигнал, который и может быть передан между узлами. Требуется много пакетов данных, чтобы передать страницу текста или файл.

Формат пакетов определяется используемым в сети протоколом. Например, протокол определяет способ указания адреса узла, посылающего пакет, адреса принимающего узла, типа передаваемых данных, размера пакета, объёма передаваемых данных и метода обнаружения поврежденных пакетов или коммуникационных ошибок. Другой важной частью пакета является синхронизирующая информация для передачи множества пакетов, позволяющая отсылать пакеты через заданные интервалы времени. На рис.1 показан общий формат пакета.

Для физической передачи пакетов в сеть служит карта сетевого интерфейса, или сетевой адаптер (networkinterface card, NIC). Сетевой адаптер позволяет подключить рабочую станцию, файл-сервер, принтер или другое устройство к сетевой передающей среде, например, к коаксиальному кабелю или витой паре. На одном конце адаптера располагается разъем (или коннектор), соответствующий типу сетевой среды.

Сетевой адаптер является приемопередатчиком, обеспечивающим канал передачи данных в сетевой среде. Его встроенные средства упаковывают во фрейм заголовок, исходный и целевой адреса, данные и хвостовик, а фрейм в виде законченного пакета передается в коммуникационную среду. Сетевой адаптер имеет алгоритмы для приема, распаковки, передачи и синхронизации данных, а также для управления конфликтами и ошибками. Программные алгоритмы, реализующие эти функции, хранятся в исполняемых и служебных файлах, называемых сетевыми драйверами. Для каждого сетевого адаптера необходимы определенные сетевые драйверы, соответствующие методу доступа к сети, формату инкапсуляции данных, типу кабельной системы и физической (MAC) адресации. В программных драйверах реализуются стандарты многоуровневых сетевых коммуникаций, заданные эталонной моделью OSI. Драйверы позволяют сетевому адаптеру выполнять передачу данных на Физическом (Уровень 1) и Канальном (Уровень 2) уровнях.

Передача ячеек

Обычно ячейка (cell) содержит фрагмент данных фиксированной длины в формате, пригодном для передачи с большими скоростями - от 155 Мбит/с до 1 Гбит/с и выше. Как показано на рис. 2 ячейка имеет заголовок(header), в котором содержится следующая информация:

Данные для управления потоком, координирующие передачу информации между исходным и целевым узлами;

Информация о маршруте и канале, позволяющая передавать данные по кратчайшему маршруту;

Признак, указывающий на то, содержит ли ячейка реальные данные или управляющую информацию для осуществления высокоскоростного соединения;

Сведения об ошибках.

Имеющая фиксированную длину полезная нагрузка ячейки отличается реальных данных, содержащихся в пакете. В зависимости от протокола, Л кеты содержат данные переменной длины, которая кратна байту (8 битам) Например, данные в пакете распространенного стандарта Ethernet может иметь длину от нескольких сот до нескольких тысяч бит.

При асинхронном режиме передачи (asynchronous transfer mode, ATM) данные в ячейке всегда имеют длину 384 бита. Технология ATM (подробно описываемая в главе 8) представляет собой метод передачи данных, в котором ячейки и множество каналов используются для пересылки речевых сигналов, видео и данных в локальных и глобальных сетях. Фиксированная длина позволяет более точно синхронизировать передачу данных и обеспечить высокие скорости коммуникаций и качество обслуживания (Quality of Serve QoS). Качество обслуживания количественно описывает качество передачи данных, пропускную способность и надежность сетевой системы. Некоторые производители и телекоммуникационные компании предлагают для своих систем или оборудования гарантированное качество обслуживания.

В первую очередь ячейки используются в сетях ATM, поэтому интерфейсы данных состоят из коммутаторовATM, интерфейсов подключаемых устройств (AUI) и оптоволоконного кабеля. В составAUI-интерфейса входят приемопередатчик и сетевые драйверы, построенные по тем же принципам, что и драйверы для сетевых адаптеров, однако ориентированные на соединения по коаксиальному кабелю, витой паре или оптоволокну.

Согласно спецификациям ATM Forum и TIA Fiber Division, LAN Section, для передачи ячеек в магистралях локальных сетей, работающих на скорости 622 Мбит/с и на расстояниях до 500 м, требуется одномодовый оптоволоконный кабель. Многомодовый кабель с полосой пропускания 500 МГц на 1 км является наиболее выгодным решением для резервных магистралей, обеспечивающих скорость до 100 Мбит/с на расстоянии до2000 м. Следовательно, наилучшая конструкция кабельной системы, удовлетворяющаяся современным и будущим требованиям к резервным магистралям, представляет собой комбинацию многомодовых (62,5/125FDDI Grade) и одномодомовых оптических кабелей. Такие решения можно рассматривать как пример комбинированной кабельной системы.

Обычно кабельная магистраль содержит от 18 до 48 многомодовых оптических кабелей. При добавлении от 6 до 12 одномодовых кабелей (имеющих чрезвычайно высокие показатели полосы пропускания) можно обеспечить совместимость с будущими высокоскоростными приложениями. Свободные (или темные) оптические кабели можно оставить не разведенными до тех пор, пока в них не появится необходимость. В большинстве проектов затраты на установку избыточных кабелей невелики по сравннию с общими расходами на монтаж и намного меньше, чем затраты на установку дополнительных кабелей в будущем.

Современная техника имеет огромное количество всевозможных входов и выходов для обмена данными с другими устройствами. В характеристиках к этой техники указываются названия всех поддерживаемых ею интерфейсов. Некоторые пользователи очень плохо разбираются во всех этих названиях и аббревиатурах, что не позволяет им грамотно оценить возможности того или иного устройства. Существуют как проводные, так и беспроводные интерфейсы, наиболее распространённые из них мы рассмотрим далее в этой статье.

Начнём с проводных интерфейсов, преимуществами которых являются надёжность и защищённость соединения, а также возможность передачи информации на высокой скорости. Одним из очень распространённых проводных интерфейсов является универсальная последовательная шина, или USB. Практически не одно современное устройство, работающее с информацией, не обходится без него. USB-порты есть во всех ноутбуках и системных блоках. В устройствах небольшого размера, таких как видеокамера или мобильный телефон могут использоваться уменьшенные версии этого стандарта. Стандарт USB появился в 1994 году. Первой была версия USB 0.7. Последней, самой современной версией является USB 3.0, скорость которой доходит до 4,8 Гбит/с.

Для мультимедийных данных используется формат HDMI. Его название переводится как мультимедийный интерфейс высокой чёткости. HDMI используется для передачи аудио и видео сигналов высокого качества со скоростью, достигающей 10,2 Гбит/с и защитой HDCP. Этот интерфейс используется в телевизорах, видеокартах и DVD плеерах. Обычно для него используется кабель длиною около 5-и метров, а при использовании усилителей длина может дойти до 35-и метров.

Ещё один высокоскоростной интерфейс - это FireWire. Его реальное название - IEEE 1394, а в устройствах производства фирмы Sony он называется i.LINK. Встречается практически на всех материнских платах. Скорость этого интерфейса 100-3200 Мбит/с.

Для компьютерных сетей используется стандарт Ethernet. В основном данный интерфейс применяется в локальных сетях. Его скорость зависит от используемого кабеля. Если в Ethernet используется коаксиальный кабель, то скорость составляет 10 Мбит/с. Передача данных, с использованием витой пары осуществляется со скоростью 100-1000 Мбит/с. А вот скорость с использованием оптоволокна может превышать 1000 Мбит/с. Существует два стандарта Ethernet: FastEthernet, скорость которого составляет 100 Мбит/с и более быстрый GigabitEthernet, который разгоняется до 1000 Мбит/с. Данный интерфейс присутствует практически на всех материнских платах, а также встречается на некоторых гаджетах и игровых консолях.

Теперь перейдём к беспроводным интерфейсам, очевидным преимуществом которых является отсутствие проводов. Начнём с инфракрасного порта, или IrDA. Он является самым старым из всех беспроводных интерфейсов. Скорость передачи данных этого интерфейса составляет 2,4 Кбит/с-16 Мбит/с. Наиболее часто используется в мобильных телефонах и пультах дистанционного управления. При двухсторонней связи действует на расстоянии до 50 см, а при односторонней связи до 10 м.

Огромную популярность в последнее время обрёл Bluetooth, который очень широко используется в мобильных телефонах. Этот интерфейс был так назван в честь Харальда Синезубого - короля Дании. Радиус его действия составляет примерно 100 метров, но наличие стен и прочих препятствий может его существенно сократить. Обмен информации осуществляется на скорости в пределах 3 Мбит/с, а в новой версии данного стандарта Bluetooth 3.0 скорость может доходить до 24 Мбит/с.

Беспроводным аналогом стандарта Ethernet является Wi-Fi, название которого в переводе означает беспроводная точность. Этот интерфейс обеспечивает соединение на скорости 54-480 Мбит/с, с радиусом действия 450 метров при отсутствии препятствий.

Усовершенствованной версией Wi-Fi является WiMAX, радиус действия, которого может доходить и до 10 км, а информация передаётся со скоростью от 30 Мбит/с до 1 Гбит/с.

Интерфейсы передачи данных развиваются так быстро, что производителям систем хранения данных сложно за ними успевать. Каждый год появляются интерфейсы, позволяющие достичь скорости передачи данных во много раз большей, чем уже существующие устройства. Коммутаторы и сетевые адаптеры начинают поддерживать новейшие скоростные интерфейсы задолго до того, как они становятся доступными в системах хранения данных.

В таблице ниже показано развитие пропускных способностей интерфейсов подключения СХД на временной шкале.

Тенденции развития интерфейсов

Ниже описаны предполагаемые годы появления новых скоростей передачи данных для различных интерфейсов, основанные на исследованиях отрасли. История показывает, что для многих интерфейсов цикл разработки новых стандартов составляет 3-4 года.

Стоит отметить, что с момента утверждении спецификации нового интерфейса и до появления на рынке поддерживающих его продуктов проходит обычно несколько месяцев. Широкое распространение нового стандарта может затянуться на несколько лет.

Также сейчас ведется работа по разработке версий уже существующих интерфейсов с пониженным энергопотреблением.

Fibre Channel

32Gbps FC (32GFC)

Работа над стандартом 32GFC, FC-PI-6, началась в начале 2010 года. В декабре 2013 ассоциация Fibre Channel Industry Association (FCIA) сообщила о завершении работы над спецификацией. Ожидается, что продукты, поддерживающие этот интерфейс, появятся на рынке в 2015 или 2016 годах. 32GFC будет использовать 25/28G SFP+ коннектор.

Мультиканальный интерфейс FC 128Gb, известный как 128FCp (параллельный четырехканальный), основывается на технологии FC 32Gb и добавлен в официальный план развития стандарта FC. Комитет T11 присвоил проекту название FC-PI-6P. Завершение спецификации планируется на конец 2014 - начало 2015 года, продукты станут доступны в 2015 или 2016 году. 128GFCp, вероятно, будет использовать коннекторы QSFP+, возможна также поддержка CFP2 или CFP4 коннекторов.

Некоторые производители представляют 32GFC и 128GFC как «Gen 6» Fibre Channel, так как эта версия поддерживает 2 различные скорости передачи данных в двух различных конфигурациях (последовательной и параллельной).

64Gbps FC (64GFC), 256Gbps FC (256GFC)

Разработка стандартов 64GFC и 256GFC началась в проекте FC-PI-7. Техническая стабильность ожидается в 2017 году. Каждая ревизия FC обратно совместима как минимум с двумя предыдущими поколениями.

FC как интерфейс SAN

По-видимому, Fibre Channel в обозримом будущем будет оставаться основной технологией для построения сетей SAN. За прошедшие годы в инфраструктуру FC были инвестированы значительные средства (миллиарды долларов США), в основном, в центры обработки данных, которые будут функционировать в течение еще многих лет.

FC как дисковый интерфейс

Fibre Channel как интерфейс для подключения дисков уходит в прошлое, так как производители дисков корпоративного класса переходят на 6Gbps SAS и 12Gbps SAS. Из-за довольно большого объема выпущенных 3.5-дюймовых дисков с интерфейсом FC, использующихся в корпоративных дисковых подсистемах, ожидается, что FC будет использоваться еще некоторое время для их поддержки. Среди 2.5-дюймовых дисков интерфейс Fibre Channel, скорее всего, будет доступен на очень небольшом числе устройств.

Fibre Channel over Ethernet

FCoE (FC-BB-6)

Работа над стандартом FC-BB-6 была завершена комитетом T11 в августе 2014 года. FC-BB-6 стандартизирует архитектуру VN2VB и улучшает масштабируемость Domain_ID.

VN2VN — это способ соединить напрямую конечные узлы FCoE (Virtual N_Ports) без необходимости в FC или FCoE коммутаторах (FC Forwarders), что позволяет упростить конфигурацию в небольших размещениях. Эту идею иногда называют «Ethernet Only» FCoE. В таких сетях не требуется зонирование, что дает меньшую сложность и уменьшает расходы.

Масштабируемость Domain_ID (Domain_ID Scalability) позволяет FCoE фабрикам масштабироваться до более крупных SAN.

40Gbps и 100Gbps

До появления 40Gbps FCoE остался год или два. Возможно, интерфейс появится одновременно с 32Gb FC. Стандарты IEEE 802.3ba 40Gbps и 100Gbps Ethernet были ратифицированы в июне 2010. Новые продукты должны появиться через некоторое время.

Скорее всего, 40Gbps и 100Gbps FCoE, основанные на стандартах Ethernet 2010 года, будут использоваться первоначально для ISL-ядер, тем самым оставляя 10Gb FCoE в основном для конечных соединений. Ожидается, что будущие версии 100GFCoE кабелей и коннекторов будут доступны в конфигурациях 10х10 и затем 4х25.

InfiniBand

В настоящее время продукты, использующие 100Gbps Infiniband EDR (Enchanced Data Rate) уже доступны в продаже. EDR использует коннекторы 25/28G SFP+, так же как интерфейсы Ethernet и Fibre Channel.

InfiniBand High Data Rate (HDR), поддерживающий скорость в 2 раза больше, чем EDR, ожидается в 2017 или 2018 году. Хост-адаптеры HDR, возможно, будут требовать наличие PCIe 4.0 слотов.

Ethernet

В июле 2014 года 2 различные отраслевые группы — 20G/50G Ethernet Consortium и IEEE 802.3 25Gb/s Ethernet Study Group — объявили о начале новой работы над спецификацией Ethernet для использования преимуществ 25Gb PHY в однополосной конфигурации. В результате была получена спецификация однополосного соединения, похожего на существующую 10GbE технологию, но в 2.5 раза быстрее. Продукты, использующие эти технологии уже доступны. Также планируется разработка стандарта 50GbE, использующего 2 полосы 25GbE. Окончание спецификации планируется в 2018-2020 году.

В разработке находятся стандарты 2.5GbE и 5GbE, которые позволяют увеличивать пропускную способность сети без дополнительных затрат благодаря использованию кабелей категории 5e. Организация NBASE-T Alliance выпустила версию 1.1 спецификацию NBASE-T, которая описывает реализацию на физическом уровне. Technical Working Group работает над спецификацией для системного интерфейса PHY-MAC, магнитными и канальными характеристиками. Кроме того, работники 25 компаний участвуют в разработке стандартов IEEE 802.3bz 2.5/5GBASE-T. Продукты, поддерживающие 2.5GbE и 5GbE уже появляются на рынке.

SAS

12Gbps SAS

Спецификация SAS 3, включающая в себя 12Gbps SAS, была отправлена в INCITS в 4 квартале 2013 года. Продукты на 12Gbps SAS для конечных пользователей начали появляться во второй половине 2013, включая SSD, сетевые адаптеры (SAS HBA) и RAID-контроллеры. 12Gbps SAS позволяет использовать все преимущества шины PCIe 3.0.

24Gbps SAS

Спецификация интерфейса 24Gbps SAS сейчас в разработке. По прогнозам, первые компоненты, использующие 24Gbps SAS могут появиться в 2016 или 2017 году, первые продукты для пользователей будут доступны в 2018. 24Gbps SAS разрабатывается из расчета полной совместимости с 12Gbps и 6Gbps SAS. Возможно, будет использована другая схема кодирования.

Прототипы интерфейса 24Gbps SAS будут использовать технологию PCIe 3.x, однако, вероятно, что финальные продукты будут задействовать технологию PCIe 4.x.

SCSI Express

SCSI Express реализует хорошо известный протокол SCSI через интерфейс PCI Express, уменьшая задержку за счет использования PCIe. Он разрабатывается для соответствия улучшенной скорости SSD дисков. SCSI Express использует протоколы SCSI over PCIe (SOP) и PCIe Queueing Interface (PQI), создавая SOP-PQI протокол. Контроллеры соединяются с устройствами с помощью коннектора SFF-8639, который поддерживает множество протоколов и интерфейсов, таких как PCIe, SAS и SATA. SCSI Express поддерживает PCIe устройства, использующие до 4х полос.

SCSI Express впервые был предложен в 2011 году и принят в работу в качестве формального проекта в 2012, но не развивался до 2015 года. Пока не известно, когда первые продукты SCSI Express будут выпущены на рынок.

Возможности подключения SAS

Новые возможности подключения SAS позволяют передавать данные на большие расстояния, благодаря использованию активных медных патч-кордов и оптоволоконных кабелей. Коннектор Mini SAS HD (SFF-8644) может быть использован для 6Gbps SAS и 12Gbps SAS.

В будущем ожидаются такие возможности, как поддержка набора команд Zoned Block Commands (ZBC) и технологии записи для дисков увеличенного объема Shingled Magnetic Recording (SMR).

SATA Express

Спецификация SATA Express включается в SATA версии 3.2. SATA Express позволяет сосуществовать клиентским SATA и PCIe решениям. SATA Express позволяет увеличить скорость передачи до 2 полос PCIe (2GBps для PCIe 3.0 и 1GBps для PCIe 2.0) по сравнению с текущей технологией SATA (0.6GBps). Такая скорость подходит для SSD и SSHD, в то время как обыкновенные HDD-диски могут продолжать использовать существующий SATA интерфейс. Каждое устройство может использовать PCIe или SATA коннектор, но не оба одновременно. Отдельный сигнал, порождаемый устройством, говорит хосту, является устройство SATA или PCI Express. На середину 2015 года SATA Express поддерживается очень небольшим количеством материнских карт. Пока не понятно, будет ли SATA Express принят рынком, в ближайшее время не стоит ожидать появления большого числа продуктов.

Новые возможности SATA

Среди новых возможностей, которые запланированы на будущее, можно отметить такие опции корпоративного уровня, как удаленное отключение питания, улучшенное восстановление массива и оптимизации для устройств, работающих на NAND флеш-памяти. Также планируется поддержка технологии SMR (Shingled Magnetic Recording).

Thunderbolt

Thunderbolt 2 был представлен в конце 2013 года, сейчас выпускается множество устройств, использующих данный интерфейс. Скорость передачи данных Thunderbolt 2 составляет 20 Gbps.

Thunderbolt 3 (40 Gbps) был анонсирован в июне 2015 года. Используется кабель USB type-C, который поддерживает USB 3.1 (10 Gbps), Display Port (двойные 4k дисплеи), 4 полосы PCI Express 3.0 и предыдущие версии Thunderbolt. В дополнение, предоставляется 15 ватт для питания подключенных устройств и поддерживается питание USB для зарядки портативных компьютеров до 100 ватт. Активные медные и оптоволоконные кабели поддерживают скорость передачи данных до 40 Gbps. Менее дорогие пассивные медные кабели поддерживают скорость до 20 Gbps. Ожидается появление первых продуктов, использующих Thunderbolt 3, в конце 2015 года. Намного больше устройств станут доступны в 2016 году.

USB

USB 3.1

В июле 2013 года USB 3.0 Promoter Group объявила о создании спецификации USB 3.1. Новый интерфейс позволяет работать со скоростью 10 Gbps и полностью совместим с предыдущими версиями USB. USB 3.1 использует схему кодирования 128b/132b, в которой 4 бита используются для управления протоколом и передачи информации о кабеле. Устройства, использующие USB 3.1 с новым кабелем Type-C уже появились на рынке.

Питание USB

USB является интерфейсом с возможностью питания подключенных устройств и появляется все больше устройств, заряжающихся или работающих от USB. Спецификация USB Power Delivery (PD) версии 1.0 появилась в июле 2012 года. В ней было предложено увеличить мощность питания с 7.5 ватт до 100 ватт в зависимости от типа кабеля и коннектора. Устройства должны договариваться друг с другом для определения напряжения и силы тока для передачи электроэнергии, причем возможно передавать энергию в любом направлении. Устройства могут корректировать мощность питания во время передачи информации. Прототипы устройств с USB PD начали появляться в конце 2013 года. Спецификация USB PD включена в спецификацию USB 3.1.

Кабель USB Type-C

Спецификация нового кабеля и коннектора была завершена в августе 2014 года. Этот кабель имеет существенно отличающийся дизайн с уменьшенным размером коннектора, который легко может применяться в различных устройствах. В соответствии с новой спецификацией кабель и коннектор могут быть использованы в любом положении, независимо от ориентации коннектора и направления кабеля. Кабель имеет один и тот же тип коннектора с обеих сторон. Первые Type-C USB кабели представляют собой пассивные медные кабели длиной до 1 м, скоро ожидается появление активных медных и оптоволоконных кабелей.

Растущий объем внедрения самых различных систем автоматизации во всех областях промышленности требует обработки постоянно возрастающего объема информации. «Основными артериями» являются кабели последовательной передачи данных, по которым управляют комплексными процессами и передают результаты измерений параметров технологического процесса.

Широко применяются различные типы последовательных интерфейсов, которые гарантируют помехозащищенную высокоскоростную передачу данных в тяжелых промышленных условиях.

RS-232 (V.24)

Один из самых распространенных последовательных интерфейсов определен в стандартах TIA-232 и CCITT V.24.

Интерфейс реализует обмен данными между двумя устройствами (соединение точка к точке) в дуплексном режиме на расстоянии до 15 м.

В самой простой конфигурации требуется три провода - ТхD (передаваемые данные), RxD (принимаемые данные) и GND (общий сигнальный провод). При этом управление передачей данных осуществляется с так называемым программным квитированием. Для передачи с программным квитированием имеются дополнительные линии, используемые для передачи сигналов управления, тактовых сигналов, а так же для сигнализации.

Интерфейсы устройств могут быть спроектированы как оборудование для передачи данных (DCE) или как оконченное оборудование обработки данных (DTE). Различительным признаком является разное направление передачи на линиях при одинаковом обозначении и назначении выводов. Пример: DTE-устройство осуществляет передачу через подключение TxD (передаваемые данные), в то время как DCE-устройство через это же соединение принимает данные. Такое решение позволяет реализовать простую прямую связь между двумя устройствами. При соединении однотипных устройств все соединительные линии необходимо перекрещивать.

Уровни сигналов обеих линий передачи данных определены следующим образом:

  • от -3 до -15 для логического значения «I»
  • от +3 до +15 для логического значения «0»

На линиях передачи управляющих и оповестительных сигналов логика работы, напротив, инвертирована (лог. «I» = положительный потенциал). Максимальная скорость передачи данных составляет 115,2 кбит/с. В промышленных условиях дистанцию передачи в таком случае рекомендуется уменьшить до 5 м.

TTY

Интерфейс TTY с токовой петлей впервые был применен в телеграфии. В настоящее время его все еще можно встретить в (ПЛК) и принтерах. Как для передачи, так и для приема данных необходимо по одной паре линий, при этом линии должны быть попарно скручены. Передача данных осуществляется в дуплексном режиме с программным квитированием. Линии передачи управляющих сигналов не предусмотрены. Значение тока 20 мА в петле соответствует состоянию логическая «I». Если цепь тока разорвана, это воспринимается как состояние логический «0». В каждой петле требуется формирующий ток источник, который может быть подключен либо на передающей, либо на принимающей стороне. Сторона, формирующая ток, считается «активной», «пассивная» же находится всегда напротив активной. Различают три конфигурации интерфейса:

  1. Полностью активные интерфейсы TTY с источниками тока как ветви передатчика, так и в ветви приемника.
  2. Пассивные интерфейсы TTY без соответствующих источников стабилизированного тока.
  3. Полуактивные интерфейсы TTY с источником тока только на стороне передачи (TD).

Приемник (RD) является пассивным. Каждая токовая петля может работать лишь с одним источником тока. Разрешены только комбинации «полностью активный/пассивный» и «полуактивный/полуактивный». Такая передача данных может быть реализована на расстояния до 1000 м. Максимальная скорость передачи составляет 19200 бит/с.

RS-422

Требования интеллектуальных машин к быстрым и высокопроизводительным средствам передачи данных описываются стандартом RS-422. Последовательная передача данных между двумя устройствами осуществляется в дуплексном режиме со скоростью до 10 Мбит/с на расстояния до 1200 м.

Электрические уровни в линиях передачи данных определены следующим образом:

  • от -0,3 до -6 для логической «I»
  • от +0,3 до +6 для логического «0».

Состояние сигнала характеризуется разницей напряжений между точками замера (А) и (В). Если напряжение в точке (А) по сравнению с напряжением в точке (В): - Отрицательно, то линия данных - лог. I, линия управления - лог.0, (UA-UB-0,3 B).

Оконченные сопротивления нагрузки (100…200 Ом) на входах приемника, не только препятствует отражению в линии передачи, но и дополнительно повышают надежность передачи благодаря четко выраженному результирующему току.

RS-485 W2

Этот тип последовательного интерфейса отличается не только высокой производительностью, как и интерфейс RS-422, но также допускает многоточечное подсоединение до 32 оконечных устройств. Электрические уровни и сопоставленные им логические значения идентичны определяемым стандартом RS-422. правда, из-за 2-проводной схемы соединения передача данных может осуществляться только в полудуплексном режиме, это означает, что передача и прием данных производятся попеременно и должны управляться соответствующей программой. Соответствующий программно реализуемый протокол должен в отличие от коммуникации по чистой схеме точка-точка обеспечить возможность обращения к каждому подключенному по многоточечной схеме оконечному устройству по адресу, а также идентификацию этого устройства. В каждый момент времени передавать данные может лишь одно оконечное устройство, все остальные должны в это время находиться в режиме «слушания». Двухпроводной шинный кабель может иметь длину до 1200 м, на его обоих концах должны быть подключены оконечные сопротивления нагрузки (100…200 Ом). Отдельные оконечные устройства могут удаляться от шины с использованием ответвлений на расстояние до 5 м. При применении попарно скрученного и экранированного кабеля максимальная скорость передачи данных составляет 10 Мбит/с. Стандарт RS-485 определяет всего лишь физические свойства интерфейса. Поэтому совместимость интерфейсов RS-485 между собой не обязательно гарантирована. Такие параметры, как скорость передачи, формат и кодирование данных определяются системными стандартами, например стандартами INTERBUS, PROFIBUS, MODBUS и т.п.

RS-485 W4

Стандарт RS-485 с 4-проводной схемой позволяет в противовес стандарту RS-485 с 2-проводной схемой осуществлять связь через шину в дуплексном режиме. Примером этого является измерительная шина DIN-Messbus. В отличие от 2-проводной технологии в этом случае ветви передачи приемника отделены друг от друга и поэтому могут работать одновременно. Топологии, основанные на принципе «ведущий/ведомый», применяются предпочтительно в измерительных шинных системах, в которых ведущее устройство ведет передачу данных максимально 32 ведомым, находящимся в режиме «слушания». Ветви передачи ведомых устройств могут находиться в третьем дискретном состоянии (tri-state), в котором поддерживается их высокое полное сопротивление. Только измерительная станция, к которой поступил запрос, активно подключает свой передатчик к шине. Электрические уровни и их логические значения соответствуют, как и во всех других интерфейсах типа RS-485, стандарту RS-422. Максимальная скорость передачи составляет 10 Мбит/с. Кабель шины должен иметь оконечные сопротивления, его жилы должны быть попарно скручены и экранированы.

Модем

Обычная телефонная сеть позволяет передавать только аналоговые сигналы в диапазоне частот от 300 Гц до 3,4 кГц. Поэтому для передачи через телефонную сеть цифровых сигналов от последовательных интерфейсов необходимо предварительное преобразование. Для этого требуется устройство, преобразующее поток цифровых данных в колебания аналоговых сигналов, а эти колебания затем обратно в поток цифровых данных. Эти процессы называют модуляцией и демодуляцией, а устройство, их выполняющее, соответственно модемом. Процесс образования коммутируемой связи соответствует международным стандартам. При этом несущая частота служит для синхронизации обоих модемов. С помощью общедоступной телефонной сети можно таким образом реализовать канал между устройствами, расположенными в любой точке мира. Но даже при использовании выделенной линии расстояния в 20 км не составляют проблемы.

Хотя требуется только два провода, передача данных чаще всего происходит в дуплексном режиме.

Максимальная производительность аналоговой линии составляет 33,6 кбит/с.

Передач а по стандарту V.90 со скоростью 56 кбит/с возможна только от интернет-сервера к модему. В обратном направлении, т.е. от модема V.90 к модему V.90, скорость передачи составляет максимум 33,6 кбит/с.

INTERBUS

INTERBUS представляет собой кольцевую систему. Передающая и принимающая линии объединены в один кабель, из-за этого INTERBUS воспринимается как древовидная структура с линиями, представленными ответвлениями от магистрального кабеля. Эти ответвления соединяются с удаленной шиной через ответвительные клеммные модули шины. Соединения между оконечными устройствами удаленной шины являются активными соединениями точка-точка, физический уровень соответствует стандарту RS-422. При этом полезные данные передаются как дифференциальные сигналы по попарно скрученным сдвоенным проводам (4 провода) в дуплексном режиме. Скорость передачи данных составляет 500 кбит/с или 2 Мбит/с. Возможная общая протяженность линий связи до 12,8 км, при этом система может включать в себя максимум 255 сегментов длиной до 400 м каждый.

Применение повторителей и согласующих резисторов-терминалов на конце линии не требуется, поскольку кольцо автоматически замыкается на последнем устройстве удаленной шины.

PROFIBUS

Шина PROFIBUS определена стандартами МЭК 61158 и МЭК 61784 и технически базируется на 2-проводной системе RS-485 с полудуплексным режимом передачи данных. Система Profibus построена как чисто линейная структура с возможностью подключения до 32 оконечных устройств, максимальная протяженностью сегмента шины составляет 1200 м. чтобы обеспечит помехоустойчивую работы шины, в частности, при высоких значениях скорости передачи данных, следует применять лишь те типы шинных кабелей, которые разработаны специально для шины Profibus. Оконечные устройства системы Profibus соединяются между собой путем прокладки двухжильного шинного кабеля со скрученными жилами. Если в сеть необходимо объединить больше оконечных устройств, то машину или промышленную установку необходимо сегментировать. Отдельные сегменты обмениваются между собой данными через повторители, которые обеспечивают усиление и разделение потенциалов сигналов, несущих полезную информацию. Каждый повторитель расширяет систему на один дополнительный сегмент с 32 оконечными устройствами и полной длиной кабеля, причем максимально можно подключить 127 оконечных устройств. Скорость передачи в системах Profibus может быть настроена в диапазоне от 9,6 кбит/с до 12Мбит/с. Значение скорости влияет на допустимую длину сегментов шины, а также пассивных ответвлений (таблица). Чтобы обеспечить надежную передачу данных, каждый сегмент шины Profibus на медном кабеле должен начинаться и заканчиваться согласующим резистором.

Скорость Длина сегмента Допустимая длина ответвления на один сегмент
9,6 кбит/с 1200 м 32х3 м
19,2 кбит/с 1200 м 32х3 м
45,45 кбит/с 1200 м 32х3 м
93,75 кбит/с 1200 м 32х3 м
187,5 кбит/с 1200 м 32х3 м
500 кбит/с 400 м 32х1 м
1,5 Мбит/с 200 м 32х0,3 м
3,0 Мбит/с 100 м Не допускается
6,0 Мбит/с 100 м Не допускается
12,0 Мбит/с 100 м Не допускается

CANopen/Device Net

Протокол локальной сети контроллеров (Controller Area Network (CAN)) был первоначально разработан для объединения в сеть автомобильной электроники. Путем расширения протокола были получены системы CANopen и Device Net для промышленных применений полевой шины.

Все оконечные устройства шины соединяют линейно трехжильным кабелем имеющим в начале и в конце согласующие сопротивления.

Оконечные устройства прослушивают обмен данными по шине и, дождавшись паузы, начинают передачу пакетов данных. Часто несколько оконечных устройств идентифицируют шину как свободную и начинают передачу данных одновременно. Поскольку разные пакеты данных при этом могли бы мешать друг другу, предусмотрен побитовый арбитраж, предотвращающий потерю данных. Этот механизм называют Carrier Sense Multiple Access with Collision Avoidment (сокращенно CSMA/CA - множественный доступ с контролем несущей и предотвращением конфликтов).

Оконечные устройства сравнивают уровни сигнала на шине с уровнями передаваемых ими сигналов. Эти уровни могут оказаться либо доминантными (уровень 0) или рецессивными (уровень I). Как только поверх собственной комбинации битов будет записан доминантный уровень, это означает, что другое оконечное устройство перешло в режим передачи. Оказавшийся рецессивным передатчик немедленно останавливает свою передачу и будет пытаться снова передать свой пакет данных уже во время следующей паузы. Сообщения, а тем самым и запросы на доступ к шине можно при раздаче адресов ранжировать по приоритетам в зависимости от количества доминантных бит.

Время распространения сигнала ограничивает максимально достижимую протяженность сети в зависимости от скорости передачи, так как метод CSMA/CA работает только в ограниченном временном окне. Это обязательно необходимо учитывать при проектировании.

Ethernet

Ethernet описан в стандарте IEE 802 и был первоначально разработан для коммуникации между офисными устройствами (компьютерами, принтерами и т.п.). При этом была принята линейная топология и был применен коаксиальный кабель. В настоящее время сети строят исключительно с децентрализованной топологией типа «звезда» на основе витых пар или оптоволоконного кабеля. При этом в промышленных сетях скорость передачи данных составляет 10 или 100 Мбит/с. Структуру сети можно согласовать с требованиями каждого отдельного случая путем организации каскадов с помощью разветвителей типа «звезда» (концентраторы, коммутаторы, маршрутизаторы).

Если для распределения данных применяют концентраторы, система должна работать в полудуплексном режиме. В этом случае обмен данными обеспечивается механизмом Carrier Sense Multiple Access with Collision Avoidment (CSMA/CA - множественный доступ с контролем несущей и предотвращением конфликтов). При этом оконечные устройства прослушивают канал обмена информацией в сети и начинают передачу данных только после приостановки других передач. Пакет отсылается каждому оконечному устройству сети. Оконечные устройства сравнивают содержащийся в присланном пакете адрес получателя со своим собственным адресом и принимают пакет только в случае совпадения адресов. Часто несколько оконечных устройств идентифицируют шину как свободную и начинают передачу данных одновременно. Вследствие этого пакеты данных разрушают друг друга, В этом случае говорят о коллизии. Активное конечное устройство, первым обнаружившее коллизию, сразу же требует от всех оконечных устройств медленной остановки передачи данных. Чтобы пакеты данных не потерялись и их можно было бы послать вновь, передатчики должны получить квитирующее сообщение до того, как был послан последний бит сообщения.

Временные ограничения квитирующего сообщения при коллизии непосредственно влияют на максимальную протяженность сети. Так называемый коллизионный домен ограничивается сетевым адаптером, маршрутизатором или коммутатором. Такая сегментация сети устраняет ограничения сети с концентраторами, благодаря этому становятся возможными большая территориальная протяженность сети и оптимизация обмена данными.

В идеальном случае каждое оконечное устройство подключают к коммутационному порту, тем самым оно получает собственный коллизионный домен. Производительность сети повышается, поскольку коллизии исключены, механизм CSMA/CD можно отключить и эксплуатировать сеть в дуплексном режиме в полосе частот двойной ширины.

При монтаже следует учитывать тип применяемого устройства. В соответствии с интерфейсами DTE/DCE в случае устройств RS-232 имеются Ethernet-устройства с интерфейсами MDI или MDIx. Однотипные устройства необходимо всегда подключать соединительными кабелями со скрещенной разводкой, а устройства различного типа кабелями с разводкой 1:1.

С помощью внутренней коммутации, объединяющей множество устройств, возможно переключение интерфейса вручную или автоматически (функция автосогласования) непосредственно на месте установки. Благодаря этому во всех случаях имеется возможность соединения кабелем с разводкой 1:1.

Еще одним автоматическим механизмом является функция автосогласования скорости и режима работы, благодаря которой устройства выбирают общие для всех скорость и режим передачи (полудуплекс или дуплекс).